Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Supervised Classification and Estimation of Hydrometeors From C-Band Dual-Polarized Radars: A Bayesian Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, a Bayesian statistical approach for supervised classification and estimation of hydrometeors, using a C-band polarimetric radar, is presented and discussed. The Bayesian Radar Algorithm for Hydrometeor Classification at C-band (BRAHCC) is supervised by a backscattering microphysical model, aimed at representing ten different hydrometeor classes in water, ice, and mixed phase. The expected error budget is evaluated by means of contingency tables on the basis of C-band radar noisy and attenuated synthetic data. Its accuracy is better than that obtained from a previously developed fuzzy logic C-band classification algorithm. As a second step of the overall retrieval algorithm, a multivariate regression is adopted to derive water content statistical estimators, exploiting simulated polarimetric radar data for each hydrometeor class. The BRAHCC methodology is then applied to a convective hail event, observed by two C-band dual-polarized radars in a network configuration. The hydrometeor classification along the line of sight, connecting the two C-band radars, is performed using the BRAHCC applied to path-attenuation-corrected data. Qualitative results are consistent with those derived from the fuzzy logic algorithm. Hydrometeor water content temporal evolution is tracked along the radar line of sight. Hail vertical occurrence is derived and compared with an empirical hail detection index applied along the radar connection line during the whole event.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 1 )