By Topic

Parameterized Proof Complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dantchev, S. ; Durham Univ., Durham ; Martin, B. ; Szeider, S.

We propose a proof-theoretic approach for gaining evidence that certain parameterized problems are not fixed-parameter tractable. We consider proofs that witness that a given propositional CNF formula cannot be satisfied by a truth assignment that sets at most k variables to true, considering k as the parameter (we call such a formula a parameterized contradiction). One could separate the parameterized complexity classes FPT and W(M. Cesati, 2006) by showing that there is no fpt-bounded parameterized proof system, i.e., that there is no proof system that admits proofs of size f(k)nO(1) where f is a computable function and n represents the size of the propositional formula. By way of a first step, we introduce the system of parameterized tree-like resolution, and show that this system is not fpt-bounded. Indeed we give a general result on the size of shortest tree-like resolution proofs of parameterized contradictions that uniformly encode first-order principles over a universe of size n. We establish a dichotomy theorem that splits the exponential case of Riis's complexity-gap Theorem into two sub-cases, one that admits proofs of size f(k)nO(1) and one that does not. We also discuss how the set of parameterized contradictions may be embedded into the set of (ordinary) contradictions by the addition of new axioms. When embedded into general (DAG-like) resolution, we demonstrate that the pigeonhole principle has a proof of size 2kn2. This contrasts with the case of tree-like resolution where the embedded pigeonhole principle falls into the "non-FPT" category of our dichotomy.

Published in:

Foundations of Computer Science, 2007. FOCS '07. 48th Annual IEEE Symposium on

Date of Conference:

21-23 Oct. 2007