By Topic

Error Correction of Rainfall-Runoff Models With the ARMAsel Program

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Piet M. T. Broersen ; Delft Univ. of Technol., Delft

Improved predictions can be based on recent observed differences or errors between the best available model predictions and the actual measured data. This is possible in the predicted amount of supplies, services, sewage, transportation, power, water, heat, or gas, as well as in the predicted level of rivers. As an example, physical modeling of the dynamics of a catchment area produces models with a limited forecasting accuracy for the discharge of rivers. The discrepancies between the model and the actually observed past discharges can be used as information for error correction. With a time-series model of the error signal, an improved discharge forecast can be made for the next few days. The best type and order of the forecasting time-series model can be automatically selected. Adaptive modeling in data assimilation calculates updates of the time-series model estimated from the error data of only the last few weeks. The use of variable updated models has advantages in periods with the largest discharges, which are most important in flood forecasting.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:56 ,  Issue: 6 )