By Topic

Comparison of Autoregressive Measures for DNA Sequence Similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gail Rosen ; Electrical and Computer Engineering, Drexel University, Philadelphia, PA, 19104, USA. gailr@ece.drexel.edu

It has been shown that DNA sequences can be modeled with autoregressive processes and that the Euclidean distance between model parameters is useful for detecting sequence similarity. But, the measure's robustness to nonexact, approximate matches is not explored. We go one step further and not only look at exact gene searching, but how the AR distance measures are perturbed by errors and mutation. To achieve higher accuracy in similarity searching, we compare the performance of the Euclidean distance measure to Itakura distance measure using different nucleotide mappings. The numerical mappings and distance measures have comparable performance, but in general, the Euclidean distance using the binary SW mapping distinguishes perfect matches the best. Finally, we show that it is possible to use AR measures to detect mutation-prone approximate matches by increasing the AR model order.

Published in:

2007 IEEE International Workshop on Genomic Signal Processing and Statistics

Date of Conference:

10-12 June 2007