By Topic

Spectral Generative Models for Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
David White ; University of York, UK ; Richard C. Wilson

Generative models are well known in the domain of statistical pattern recognition. Typically, they describe the probability distribution of patterns in a vector space. The individual patterns are defined by vectors and so the individual features of the pattern are well defined. In contrast, very little work has been done with generative models of graphs because graphs do not have a straightforward vectorial representation. Because of this, simple statistical quantities such as mean and variance are difficult to define for a group of graphs. While we can define statistical quantities of individual edges, it is not so straightforward to define how sets of edges in graphs are related. In this paper we examine the problem of creating generative distributions over sets of graphs. We use the spectral representation of the graphs to construct a dual vector space for the graphs. The spectral decomposition of a graph can be used to extract information about the relationship of edges and parts in a graph. Distributions are then defined on the vector spaces and used to generate new samples. Finally, these points must be used to reconstruct the sampled graph.

Published in:

Image Analysis and Processing, 2007. ICIAP 2007. 14th International Conference on

Date of Conference:

10-14 Sept. 2007