By Topic

Optimized Projections for Compressed Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Michael Elad ; Technion-Israel Inst. of Technol., Haifa

Compressed sensing (CS) offers a joint compression and sensing processes, based on the existence of a sparse representation of the treated signal and a set of projected measurements. Work on CS thus far typically assumes that the projections are drawn at random. In this paper, we consider the optimization of these projections. Since such a direct optimization is prohibitive, we target an average measure of the mutual coherence of the effective dictionary, and demonstrate that this leads to better CS reconstruction performance. Both the basis pursuit (BP) and the orthogonal matching pursuit (OMP) are shown to benefit from the newly designed projections, with a reduction of the error rate by a factor of 10 and beyond.

Published in:

IEEE Transactions on Signal Processing  (Volume:55 ,  Issue: 12 )