By Topic

Trajectory Association across Multiple Airborne Cameras

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sheikh, Y.A. ; Carnegie Mellon Univ., Pittsburgh ; Shah, M.

A camera mounted on an aerial vehicle provides an excellent means to monitor large areas of a scene. Utilizing several such cameras on different aerial vehicles allows further flexibility in terms of increased visual scope and in the pursuit of multiple targets. In this paper, we address the problem of associating trajectories across multiple moving airborne cameras. We exploit geometric constraints on the relationship between the motion of each object across cameras without assuming any prior calibration information. Since multiple cameras exist, ensuring coherency in association is an essential requirement, e.g., that transitive closure is maintained between more than two cameras. To ensure such coherency, we pose the problem of maximizing the likelihood function as a k-dimensional matching and use an approximation to find the optimal assignment of association. Using the proposed error function, canonical trajectories of each object and optimal estimates of intercamera transformations (in a maximum likelihood sense) are computed. Finally, we show that, as a result of associating trajectories across the cameras, under special conditions, trajectories interrupted due to occlusion or missing detections can be repaired. Results are shown on a number of real and controlled scenarios with multiple objects observed by multiple cameras, validating our qualitative models, and, through simulation, quantitative performance is also reported.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 2 )