By Topic

Design of a 1-MHz LLC Resonant Converter Based on a DSP-Driven SOI Half-Bridge Power MOS Module

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
de Groot, H. ; NXP Semicond., Nijmegen ; Janssen, E. ; Pagano, R. ; Schetters, K.

In this paper, the design of a 1-MHz LLC resonant converter prototype is presented. Aiming to provide an integrated solution of the resonant converter, a half-bridge (HB) power metal oxide semiconductor (MOS) module employing silicon-on-insulator technology has been designed. Such a technology, which is suitable for high-voltage and high-frequency applications, allows enabling HB power MOSFET modules operating up to 3MHz with a rated voltage of 400V. The power device integrates the driving stages of the high-side and low-side switch along with a latch circuit used to implement over-voltage/over-current protection. The module has been designed to be driven by a digital signal processor device, which has been adopted to perform frequency modulation of the resonant converter. By this way, output voltage regulation against variations from light- to full-loaded conditions has been achieved. The issues related to the transformer design of the LLC resonant converter are discussed, too. Owing to the high switching frequency experienced by the converter, 3F4 ferrite cores have been selected for their low magnetic power losses between 0.5 and 3 MHz and core temperatures up to 120degC. The resonant converter has been designed to operate in an input voltage range of 300-400V with an output voltage of 12V and a maximum output power of 120W. Within these design specifications, a performance analysis of the LLC converter has been conducted, comparing the results obtained at the switching frequencies of 500kHz and 1MHz. A suitable model of the LLC resonant converter has been developed to aid the prototype design.

Published in:

Power Electronics, IEEE Transactions on  (Volume:22 ,  Issue: 6 )