By Topic

Fusion of Support Vector Machines for Classification of Multisensor Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Waske, B. ; Univ. of Bonn, Bonn ; Benediktsson, J.A.

The classification of multisensor data sets, consisting of multitemporal synthetic aperture radar data and optical imagery, is addressed. The concept is based on the decision fusion of different outputs. Each data source is treated separately and classified by a support vector machine (SVM). Instead of fusing the final classification outputs (i.e., land cover classes), the original outputs of each SVM discriminant function are used in the subsequent fusion process. This fusion is performed by another SVM, which is trained on the a priori outputs. In addition, two voting schemes are applied to create the final classification results. The results are compared with well-known parametric and nonparametric classifier methods, i.e., decision trees, the maximum-likelihood classifier, and classifier ensembles. The proposed SVM-based fusion approach outperforms all other approaches and significantly improves the results of a single SVM, which is trained on the whole multisensor data set.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 12 )