By Topic

Robust Adaptive Backstepping Motion Control of Linear Ultrasonic Motors Using Fuzzy Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Central Univ., Chungli ; Po-Huang Shieh ; Po-Huan Chou

A robust adaptive fuzzy neural network (RAFNN) backstepping control system is proposed to control the position of an X-Y-Theta motion control stage using linear ultrasonic motors (LUSMs) to track various contours in this study. First, an X-Y-Theta motion control stage is introduced. Then, the single-axis dynamics of LUSM mechanism with the introduction of a lumped uncertainty, which includes cross-coupled interference and friction force, is derived. Moreover, a conventional backstepping approach is proposed to compensate the uncertainties occurred in the motion control system. Furthermore, to improve the control performance in the tracking of the reference contours, an RAFNN backstepping control system is proposed to remove the chattering phenomena caused by the sign function in the backstepping control law. In the proposed RAFNN backstepping control system, a Sugeno-type adaptive fuzzy neural network (SAFNN) is employed to estimate the lumped uncertainty directly and a compensator is utilized to confront the reconstructed error of the SAFNN. In addition, the motions at the X axis, Y axis, and Theta axis are controlled separately. The experimental results show that the contour tracking performance is significantly improved and the robustness to parameter variations, external disturbances, cross-coupled interference, and friction force can be obtained, as well using the proposed RAFNN backstepping control system.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:16 ,  Issue: 3 )