Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Genetic-Fuzzy Data Mining With Divide-and-Conquer Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tzung-Pei Hong ; Nat. Univ. of Kaohsiung, Kaohsiung ; Chun-Hao Chen ; Yeong-Chyi Lee ; Yu-Lung Wu

Data mining is most commonly used in attempts to induce association rules from transaction data. Most previous studies focused on binary-valued transaction data. Transaction data in real-world applications, however, usually consist of quantitative values. This paper, thus, proposes a fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions. A genetic algorithm (GA)-based framework for finding membership functions suitable for mining problems is proposed. The fitness of each set of membership functions is evaluated by the fuzzy-supports of the linguistic terms in the large 1-itemsets and by the suitability of the derived membership functions. The evaluation by the fuzzy supports of large 1-itemsets is much faster than that when considering all itemsets or interesting association rules. It can also help divide-and-conquer the derivation process of the membership functions for different items. The proposed GA framework, thus, maintains multiple populations, each for one item's membership functions. The final best sets of membership functions in all the populations are then gathered together to be used for mining fuzzy association rules. Experiments are conducted to analyze different fitness functions and set different fitness functions and setting different supports and confidences. Experiments are also conducted to compare the proposed algorithm, the one with uniform fuzzy partition, and the existing one without divide-and-conquer, with results validating the performance of the proposed algorithm.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:12 ,  Issue: 2 )