Cart (Loading....) | Create Account
Close category search window

Reliability Analysis of Lead-Free Solder Castellations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, the reliability of lead-free solder castellations is considered. The newly developed stress-dependent Engelmaier's solder fatigue model is utilized in this task. Based on this model, it is possible to interpret the thermal cycling test results. A very good agreement between the test results and the lifetime predictions is obtained. Using the lifetime prediction model, optimal solder castellation shape is investigated. Based on the findings, the fatigue life can be improved by up to 30% simply by solder pad length optimization. Further increment in lifetime length can be expected if the solder joint shape is optimized with the help of modeling tools presented here. Understanding how the crack propagates in solder material is vital if optimal lifetime behavior is expected.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:31 ,  Issue: 1 )

Date of Publication:

March 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.