Cart (Loading....) | Create Account
Close category search window
 

A Digital Requantizer With Shaped Requantization Noise That Remains Well Behaved After Nonlinear Distortion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Swaminathan, A. ; Univ. of California at San Diego, La Jolla ; Panigada, A. ; Masry, E. ; Galton, I.

A major problem in oversampling digital-to-analog converters and fractional-N frequency synthesizers, which are ubiquitous in modern communication systems, is that the noise they introduce contains spurious tones. The spurious tones are the result of digitally generated, quantized signals passing through nonlinear analog components. This paper presents a new method of digital requantization called successive requantization, special cases of which avoids the spurious tone generation problem. Sufficient conditions are derived that ensure certain statistical properties of the quantization noise, including the absence of spurious tones after nonlinear distortion. A practical example is presented and shown to satisfy these conditions.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.