By Topic

Design of Linear Phase FIR Filters in Subexpression Space Using Mixed Integer Linear Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ya Jun Yu ; Nanyang Technol. Univ., Singapore ; Yong Ching Lim

In this paper, a novel optimization technique is proposed to optimize filter coefficients of linear phase finite-impulse response (FIR) filter to share common subexpressions within and among coefficients. Existing approaches of common subexpression elimination optimize digital filters in two stages: first, an FIR filter is designed in a discrete space such as finite wordlength space or signed power-of-two (SPT) space to meet a given specification; in the second stage, an optimization algorithm is applied on the discrete coefficients to find and eliminate the common subexpressions. Such a two-stage optimization technique suffers from the problem that the search space in the second stage is limited by the finite wordlength or SPT coefficients obtained in the first stage optimization. The new proposed algorithm overcomes this problem by optimizing the filter coefficients directly in subexpression space for a given specification. Numerical examples of benchmark filters show that the required number of adders obtained using the proposed algorithm is much less than those obtained using two-stage optimization approaches.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:54 ,  Issue: 10 )