By Topic

Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rezaei, S. ; California Univ., Berkeley ; Sengupta, Raja

We present a position estimation scheme for cars based on the integration of global positioning system (GPS) with vehicle sensors. The aim is to achieve enough accuracy to enable in vehicle cooperative collision warning, i.e., systems that provides warnings to drivers based on information about the motions of neighboring vehicles obtained by wireless communications from those vehicles, without use of ranging sensors. The vehicle sensors consist of wheel speed sensors, steering angle encoder, and a fiber optic gyro. We fuse these in an extended Kalman filter. The process model is a dynamic bicycle model. We present data from about 60 km of driving in urban environments including stops, intersection turns, U-turns, and lane changes, at both low and high speeds. The data show the filter estimates position, speed, and heading with the accuracies required by cooperative collision warning in all except two kinds of settings. The data also shows GPS and vehicle sensor integration through a bicycle model compares favorably with position estimation by fusing GPS and inertial navigation system (INS) through a kinematic model.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:15 ,  Issue: 6 )