By Topic

Improve Computer-Aided Diagnosis With Machine Learning Techniques Using Undiagnosed Samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming Li ; Nanjing Univ., Nanjing ; Zhi-Hua Zhou

In computer-aided diagnosis (CAD), machine learning techniques have been widely applied to learn a hypothesis from diagnosed samples to assist the medical experts in making a diagnosis. To learn a well-performed hypothesis, a large amount of diagnosed samples are required. Although the samples can be easily collected from routine medical examinations, it is usually impossible for medical experts to make a diagnosis for each of the collected samples. If a hypothesis could be learned in the presence of a large amount of undiagnosed samples, the heavy burden on the medical experts could be released. In this paper, a new semisupervised learning algorithm named Co-Forest is proposed. It extends the co-training paradigm by using a well-known ensemble method named Random Forest, which enables Co-Forest to estimate the labeling confidence of undiagnosed samples and easily produce the final hypothesis. Experiments on benchmark data sets verify the effectiveness of the proposed algorithm. Case studies on three medical data sets and a successful application to microcalcification detection for breast cancer diagnosis show that undiagnosed samples are helpful in building CAD systems, and Co-Forest is able to enhance the performance of the hypothesis that is learned on only a small amount of diagnosed samples by utilizing the available undiagnosed samples.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:37 ,  Issue: 6 )