By Topic

Fuzzy System Learned Through Fuzzy Clustering and Support Vector Machine for Human Skin Color Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chia-Feng Juang ; Nat. Chung Hsing Univ., Taichung ; Shih-Hsuan Chiu ; Shen-Jie Shiu

This paper proposes a Fuzzy System learned through Fuzzy Clustering and Support Vector Machine (FS-FCSVM). The FS-FCSVM is a fuzzy system constructed by fuzzy if-then rules with fuzzy singletons in the consequence. The structure of FS-FCSVM is constructed by fuzzy clustering on the input data, which helps to reduce the number of rules. Parameters in FS-FCSVM are learned through a support vector machine (SVM) for the purpose of achieving higher generalization ability. In contrast to nonlinear kernel-based SVM or some other fuzzy systems with a support vector learning mechanism, both the number of parameters/rules in FS-FCSVM and the computation time are much smaller. FS-FCSVM is applied to skin color segmentation. For color information representation, different types of features based on scaled hue and saturation color space are used. Comparisons with a fuzzy neural network, the Gaussian kernel SVM, and mixture of Gaussian classifiers are performed to show the advantage of FS-FCSVM.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:37 ,  Issue: 6 )