By Topic

Process Development for CMOS-MEMS Sensors With Robust Electrically Isolated Bulk Silicon Microstructures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hongwei Qu ; Oakland Univ., Rochester ; Huikai Xie

This paper presents a deep reactive-ion etching (DRIE)-based post-CMOS micromachining process that provides robust electrically isolated single-crystal silicon (SCS) microstructures for integrated inertial sensors. Several process issues arise from previously reported three-axis CMOS microelectromechanical system (MEMS) accelerometers, including sidewall contaminations of SCS microstructures in plasma etch and a severe silicon undercut caused by overheating of suspended microstructures. Solutions to these issues have been found and are discussed in detail in this paper. In particular, a lumped-element model is developed to estimate the temperature rise on suspended microstructures in a silicon DRIE process. Based on the thermal modeling and experiments, a thick photoresist layer has been used as a thermal path to avoid the severe silicon undercut. The sidewall contamination problem is also eliminated using the modified CMOS-MEMS process. A three-axis accelerometer with a low-noise, low-power on-chip amplifier has been successfully fabricated using the new process. Footing effect was observed on the backside of the sensor microstructure, but it has little effect on the structural integrity and sensitivity of the sensor.

Published in:

Microelectromechanical Systems, Journal of  (Volume:16 ,  Issue: 5 )