By Topic

On Fundamental Limitations of Chemical and Bionic Information Storage Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rothstein, Jerome ; Laboratory for Electronics, Inc., Boston, Mass.

Bionic information storage combines stability and ultramicrominiaturization with self-replication. Rough estimates are given of thermodynamic limitations on stability and bit storage density and observations made on additional constraints self-replicative ability might entail. Reasonable storage stability requirement is bit configurational energy ??20 kT (~0.5 ev or 10-12 erg) to prevent thermal degradation of information; significant diminution requires low temperature storage. Bit linear dimension is ~10 ?? (much smaller goes below molecular size, much larger exceeds known bionic bit size), corresponding to storage density upper limit ~1021 bits/cc. Self-replication by diffusion of "building blocks" from solution and short-range chemical forces (e.g., template model) implies one-or two-dimensional structure by accessibility arguments; one dimensional favored over two dimensional to permit separation of copy and model via higher solution entropy of one dimensional. Static storage is more stable in three-dimensional packing via steric considerations, resonance stabilization, or internal H bonding. One thus expects a) three-dimensional bionic packing during inert storage, b) one-dimensional "unrolled" actively replicating form, c) rather close approach to ultimate storage density in inert form, d) higher configurational binding energy per bit for self-replicating systems than required for inert storage. These expectations seem to be reasonably well realized in nature.

Published in:

Military Electronics, IEEE Transactions on  (Volume:MIL-7 ,  Issue: 2 & 3 )