By Topic

Two-step annealing technique for leakage current reduction in chemical-vapor-deposited Ta/sub 2/O/sub 5/ film

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. Shinriki ; Hitachi Ltd., Kokubunji, Tokyo, Japan ; M. Nakata ; Y. Nishioka ; K. Mukai

A capacitor technology developed to obtain extremely thin Ta/sub 2/O/sub 5/ dielectric film with an effective SiO/sub 2/ film thickness down to 3 nm (equivalent to 11 fF/ mu m/sup 2/) for a 1.5-V, low-power, high-density, 64-Mb DRAM is discussed. The Ta/sub 2/O/sub 5/ has low leakage current, low defect density, and excellent step coverage. The key process is two-step annealing after the deposition of the film by thermal chemical vapor deposition (CVD). The first step involves ozone (O/sub 3/) annealing with ultraviolet light irradiation, which reduces the leakage current. The second step is dry oxygen (O/sub 2/) annealing, which decreases the defect density. A more significant reduction in the leakage current is attained by the combination of the two annealing steps.<>

Published in:

IEEE Electron Device Letters  (Volume:10 ,  Issue: 11 )