Cart (Loading....) | Create Account
Close category search window

An Ocean Surface Wind Vector Model Function for a Spaceborne Microwave Radiometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soisuvarn, S. ; Nat. Oceanic & Atmos. Adm., Camp Springs ; Jelenak, Z. ; Jones, W.L.

Surface wind vector measurements over the oceans are vital for scientists and forecasters to understand the Earth's global weather and climate. In the last two decades, operational measurements of global ocean wind speeds were obtained from passive microwave radiometers (Special Sensor Microwave/ Imagers); and over this period, full ocean surface wind vector data were obtained from several National Aeronautics and Space Administration and European Space Agency scatterometry missions. However, since SeaSat-A in 1978, there have not been other combined active and passive wind measurements on the same satellite until the launch of Japan Aerospace Exploration Agency's Advanced Earth Observing Satellite-II in 2002. This mission provided a unique data set of coincident measurements between the SeaWinds scatterometer and the Advanced Microwave Scanning Radiometer (AMSR). The AMSR instrument measured linearly polarized brightness temperatures (TB) over the ocean. Although these measurements contained wind direction information, the overlying atmospheric influence obscured this signal and made wind direction retrievals not feasible. However, for radiometer channels between 10 and 37 GHz, a certain linear combination of vertical and horizontal brightness temperatures causes the atmospheric dependence to cancel and surface parameters such as wind speed and direction and sea surface temperature to dominate the resulting signal. In this paper, an empirical relationship between AMSR TB's (specifically A . TBV - TBH) and surface wind vectors (inferred from SeaWinds' retrievals) is established for three microwave frequencies: 10, 18, and 37 GHz. This newly developed wind vector model function for microwave radiometers can serve as a basis for wind vector retrievals either separately or in combination with active scatterometer measurements.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.