Cart (Loading....) | Create Account
Close category search window
 

Inferring Vegetation Water Content From C- and L-Band SAR Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Notarnicola, C. ; Politecnico di Bari, Bari ; Posa, F.

This paper addresses the capability of synthetic aperture radar and optical images in combination with theoretical models to detect the vegetation water content (VWC) at field level. In this paper, a retrieval algorithm for the estimation of VWC from AirSAR acquired on vegetated fields during the SMEX'02 experiment is addressed. The aforementioned campaign has been chosen because, along with sensor observations, extensive ground truth measurements were acquired. The retrieval procedure, which is based on a Bayesian approach, has been initially developed for soil moisture extraction. It consists of two modules: one is pertinent to bare soils and the other one has been modified for vegetated fields. The last one uses the synergy with optical images to correct for the contribution of VWC. The VWC, a variable in the inversion procedure, as well as soil moisture can be estimated. The results indicate a good correlation with both ground measurements and VWC calculated from Landsat images through the use of normalized difference water index (NDWI). Furthermore, in the inversion procedure, the introduction of the dependence on roughness improves the estimates. This indicates that, even for dense vegetation, the contribution from bare soil greatly influences the radar signal. Three main levels of VWC are discriminated in the inversion procedure: values below 1 kg/m2, values between 1 and 3 kg/m2, and values greater than 3 kg/m2.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.