By Topic

Classification and Recognition of Dynamical Models: The Role of Phase, Independent Components, Kernels and Optimal Transport

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bissacco, A. ; Univ. of California, Los Angeles ; Chiuso, A. ; Soatto, S.

We address the problem of performing decision tasks and, in particular, classification and recognition in the space of dynamical models in order to compare time series of data. Motivated by the application of recognition of human motion in image sequences, we consider a class of models that include linear dynamics, both stable and marginally stable (periodic), both minimum and nonminimum phases, driven by non-Gaussian processes. This requires extending existing learning and system identification algorithms to handle periodic modes and nonminimum-phase behavior while taking into account higher order statistics of the data. Once a model is identified, we define a kernel-based cord distance between models, which includes their dynamics, their initial conditions, and input distribution. This is made possible by a novel kernel defined between two arbitrary (non-Gaussian) distributions, which is computed by efficiently solving an optimal transport problem. We validate our choice of models, inference algorithm, and distance on the tasks of human motion synthesis (sample paths of the learned models) and recognition (nearest-neighbor classification in the computed distance). However, our work can be applied more broadly where one needs to compare historical data while taking into account periodic trends, nonminimum-phase behavior, and non-Gaussian input distributions.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 11 )