Cart (Loading....) | Create Account
Close category search window
 

An Efficient Multimodal 2D-3D Hybrid Approach to Automatic Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mian, A.S. ; Univ. of Western Australia, Crawley ; Bennamoun, M. ; Owens, R.

We present a fully automatic face recognition algorithm and demonstrate its performance on the FRGC v2.0 data. Our algorithm is multimodal (2D and 3D) and performs hybrid (feature based and holistic) matching in order to achieve efficiency and robustness to facial expressions. The pose of a 3D face along with its texture is automatically corrected using a novel approach based on a single automatically detected point and the Hotelling transform. A novel 3D spherical face representation (SFR) is used in conjunction with the scale-invariant feature transform (SIFT) descriptor to form a rejection classifier, which quickly eliminates a large number of candidate faces at an early stage for efficient recognition in case of large galleries. The remaining faces are then verified using a novel region-based matching approach, which is robust to facial expressions. This approach automatically segments the eyes- forehead and the nose regions, which are relatively less sensitive to expressions and matches them separately using a modified iterative closest point (ICP) algorithm. The results of all the matching engines are fused at the metric level to achieve higher accuracy. We use the FRGC benchmark to compare our results to other algorithms that used the same database. Our multimodal hybrid algorithm performed better than others by achieving 99.74 percent and 98.31 percent verification rates at a 0.001 false acceptance rate (FAR) and identification rates of 99.02 percent and 95.37 percent for probes with a neutral and a nonneutral expression, respectively.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.