By Topic

Characterization of Silver/Polystyrene (PS)-Coated Hollow Glass Waveguides at THz Frequency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Finite-element analysis based on the full-vectorial H-field formulation has been established as one of the most powerful and accurate modal solution approaches for optical guided-wave devices. Among the available optical waveguides, those incorporating thin metal layers supporting the surface plasmon modes (SPMs) and coupling of these modes to dielectric modes have recently been proven to be attractive for many applications. In this paper, the H-field approach incorporating the perturbation technique is used in calculating the complex propagation characteristics of silver/polystyrene (PS)-coated hollow glass waveguides for terahertz frequency radiation. The propagation and attenuation characteristics of the SPMs at the metal/dielectric interfaces are presented. The formation of the coupled supermodes and the effect of the PS coating thickness on the attenuation characteristics of these waveguides are also investigated and shown to be critical to their design optimization.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 9 )