Cart (Loading....) | Create Account
Close category search window
 

Survey of Rough and Fuzzy Hybridization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lingras, P. ; Saint Mary''s Univ., Halifax ; Jensen, R.

This paper provides a broad overview of logical and black box approaches to fuzzy and rough hybridization. The logical approaches include theoretical, supervised learning, feature selection, and unsupervised learning. The black box approaches consist of neural and evolutionary computing. Since both theories originated in the expert system domain, there are a number of research proposals that combine rough and fuzzy concepts in supervised learning. However, continuing developments of rough and fuzzy extensions to clustering, neurocomputing, and genetic algorithms make hybrid approaches in these areas a potentially rewarding research opportunity as well.

Published in:

Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International

Date of Conference:

23-26 July 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.