By Topic

Experimental Comparison of Control Approaches on Trajectory Tracking Control of a 3-DOF Parallel Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lu Ren ; Toronto Univ., Torornto ; Mills, J.K. ; Dong Sun

In this paper, the effect of control approaches on improvement of trajectory tracking accuracy of a 3-degree-of-freedom (DOF) planar parallel robot is studied through the experimental evaluation of four controllers: proportional-integral (PI)-type synchronized control, adaptive synchronized (A-S) control, conventional proportional-integral-differential (PID) control and adaptive control. The adaptive control and A-S control are dynamic model-based while the PID and PI-type synchronized control are not. Given the closed-loop kinematic chain mechanism structure, tracking control of the planar parallel robot may be treated as a synchronization control problem; hence, use of the synchronized-type control approaches can substantially improve tracking accuracy of the robot end-effector compared with use of the nonsynchronized-type control approaches. Further, with uncertain dynamic parameters, use of the A-S control, a model-based synchronized control approach, can, thus, improve the tracking performance. Through experiments conducted on an experimental 3-DOF planar parallel robot, the previous claims are demonstrated.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:15 ,  Issue: 5 )