By Topic

Output feedback model predictive control for nonlinear systems represented by Hammerstein-Wiener model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. Ding ; Chongqing Univ., Chongqing ; B. Huang

This paper addresses synthesis approaches to output feedback model predictive control (OFMPC) for systems with Hammerstein-Wiener nonlinearity and bounded disturbance/noise. The Hammerstein nonlinearity is removed (or partially removed) by constructing its inverse (or pseudo-inverse). The remaining nonlinearities in the model are incorporated by polytopic descriptions. At each sampling time, OFMPC finds a feedback gain and an estimator, such that the state of the closed-loop system asymptotically converges to a neighbourhood of the origin. A numerical example is given to illustrate the effectiveness of the controller.

Published in:

IET Control Theory & Applications  (Volume:1 ,  Issue: 5 )