Cart (Loading....) | Create Account
Close category search window
 

A Complete Multiagent Framework for Robust and Adaptable Dynamic Job Shop Scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ning Liu ; Tennessee Technol. Univ., Cookeville ; Abdelrahman, M.A. ; Ramaswamy, S.

This paper presents a complete multiagent framework for dynamic job shop scheduling, with an emphasis on robustness and adaptability. It provides both a theoretical basis and some experimental justifications for such a framework: a job dispatching procedure for a completely reactive scheduling approach, combining real-time and predictive decision making. It resolves various disruptions as flexibly as dispatching rules while providing more stability. It is ready to be implemented in a distributed environment where agents have minimum global information thereby improving system fault tolerance. Computational experiments on dynamic job arrivals provide the experimental justification of the framework. First, a comparison of computational results on unpredictable job arrivals among the presented framework and commonly used dispatching rules is presented to show the effectiveness and robustness of the developed framework. Then, a comparison of the computational results among four cases of dynamic job arrivals is presented to demonstrate the effects of making full use of available uncertain information about disruptions using this framework for the enhancement of scheduling robustness.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:37 ,  Issue: 5 )

Date of Publication:

Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.