By Topic

Immune-Inspired Adaptable Error Detection for Automated Teller Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper presents an immune-inspired adaptable error detection (AED) framework for automated teller machines (ATMs). This framework has two levels: one is local to a single ATM, while the other is network-wide. The framework employs vaccination and adaptability analogies of the immune system. For discriminating between normal and erroneous states, an immune-inspired one-class supervised algorithm was employed, which supports continual learning and adaptation. The effectiveness of the proposed approach was confirmed in terms of classification performance and impact on availability. The overall results are encouraging as the downtime of ATMs can de reduced by anticipating the occurrence of failures before they actually occur.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:37 ,  Issue: 5 )