By Topic

A Memetic Fingerprint Matching Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Weiguo Sheng ; Dept. of Electron., Kent Univ., Canterbury ; Howells, G. ; Fairhurst, Michael ; Deravi, F.

Minutiae point pattern matching is the most common approach for fingerprint verification. Although many minutiae point pattern matching algorithms have been proposed, reliable automatic fingerprint verification remains as a challenging problem, both with respect to recovering the optimal alignment and the construction of an adequate matching function. In this paper, we develop a memetic fingerprint matching algorithm (MFMA) which aims to identify the optimal or near optimal global matching between two minutiae sets. Within the MFMA, we first introduce an efficient matching operation to produce an initial population of local alignment configurations by examining local features of minutiae. Then, we devise a hybrid evolutionary procedure by combining the use of the global search functionality of a genetic algorithm with a local improvement operator to search for the optimal or near optimal global alignment. Finally, we define a reliable matching function for fitness computation. The proposed algorithm was evaluated by means of a series of experiments conducted on the FVC2002 database and compared with previous work. Experimental results confirm that the MFMA is an effective and practical matching algorithm for fingerprint verification. The algorithm is faster and more accurate than a traditional genetic-algorithm-based method. It is also more accurate than a number of other methods implemented for comparison, though our method generally requires more computational time in performing fingerprint matching.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:2 ,  Issue: 3 )