By Topic

Warping-Based Offline Signature Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gady Agam ; Dept. of Comput. Sci., Illinois Inst. of Technol., Chicago, IL ; Suneel Suresh

Offline signature recognition is an important form of biometric identification that can be used for various purposes. Similar to other biometric measures, signatures have inherent variability and so pose a difficult recognition problem. In this paper, we explore a novel approach for reducing the variability associated with matching signatures based on curve warping. Existing techniques, such as the dynamic time warping approach, address this problem by minimizing a cost function through dynamic programming. This is by nature a 1-D optimization process that is possible when a 1-D parametrization of the curves is known. In this paper, we propose a novel approach for solving the curve correspondence problem that is not limited by the requirement of 1-D parametrization. The proposed approach utilizes particle dynamics and minimizes a cost function through an iterative solution of a system of first-order ordinary differential equations. The proposed approach is, therefore, capable of handling complex curves for which a simple parametrization is not available. The proposed approach is evaluated by measuring the precision and recall rates of documents based on signature similarity. To facilitate a realistic evaluation, the signature data we use were collected from real-world documents, spanning a period of several decades.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:2 ,  Issue: 3 )