We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Fault Ride-Through of Large Wind Farms Using Series Dynamic Braking Resistors (March 2007)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Causebrook, A. ; Newcastle Univ., Newcastle-upon-Tyne ; Atkinson, D.J. ; Jack, A.G.

Fault ride-through (FRT) is required for large wind farms in most power systems. Fixed speed wind turbines (FSWTs) are a diminishing but significant sector in the fast-growing wind turbine (WT) market. State-of-art techniques applied to meet grid requirements for FSWT wind farms are blade pitching and dynamic reactive power compensation (RPC). Blade pitching is constrained by the onerous mechanical loads imposed on a wind turbine during rapid power restoration. Dynamic RPC is constrained by its high capital cost. These present technologies can therefore be limiting, especially when connecting to smaller power systems. A novel alternative technology is proposed that inserts series resistance into the generation circuit. The series dynamic braking resistor (SDBR) dissipates active power and boosts generator voltage, potentially displacing the need for pitch control and dynamic RPC. This paper uses a representative wind farm model to study the beneficial effect of SDBR compared to dynamic RPC. This is achieved by quasi-steady-state characterization and transient FRT stability simulations. The analysis shows that SDBR can substantially improve the FRT performance of a FSWT wind farm. It also shows that a small resistance, inserted for less than one

Published in:

Power Systems, IEEE Transactions on  (Volume:22 ,  Issue: 3 )