By Topic

Characterization of Analog Local Cluster Neural Network Hardware for Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sitte, J. ; Queensland Univ. of Technol., Brisbane ; Liang Zhang ; Rueckert, U.

The local cluster neural network (LCNN) was designed for analog realization especially suited to applications in control systems. It uses clusters of sigmoidal neurons to generate basis functions that are localized in multidimensional input space. Sigmoidal neurons are well suited to analog electronic realization. In this paper, we report the results of extensive measurements that characterize the computational capabilities of the first analog very large scale integration (VLSI) realization of the LCNN. Despite manufacturing fluctuations and the inherent low precision of analog electronics, the test results suggest that it may be suitable for use in feedback control systems.

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 4 )