By Topic

Training Recurrent Neurocontrollers for Real-Time Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Prokhorov, D.V. ; Toyota Motor Eng. & Manufacturing North America, Ann Arbor

In this paper, we introduce a new approach to train recurrent neurocontrollers for real-time applications. We begin with training a recurrent neurocontroller for robustness on high-fidelity models of physical systems. For training, we use a recently developed derivative-free Kalman filter method which we enhance for controller training. After training, we fix weights of our recurrent neurocontroller and deploy it in an embedded environment. Then, we carry out additional training of the neurocontroller by adapting in real time its internal state (short-term memory), rather than its weights (long-term memory). Such real-time training is done with a new combination of simultaneous perturbation stochastic approximation (SPSA) and adaptive critic. Our critic is also a recurrent neural network (RNN), and it is trained by stochastic meta-descent (SMD) for increased efficiency. Our approach is applied to two important practical problems, electronic throttle control and hybrid electric vehicle control, with apparent performance improvement.

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 4 )