By Topic

Small Spherical Antennas Using Arrays of Electromagnetically Coupled Planar Elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This letter presents the design, fabrication, and experimental characterization of small spherical antennas fabricated using arrays of non-interconnected planar conductor elements. The antennas are based upon spherical resonator structures with radiation Q-factors approaching $1.5times$ the fundamental lower limit. The antennas are formed by coupling these resonators to an impedance-matched coplanar strip transmission line. Direct electrical connection between the feed and the antenna are made only to conductor elements coplanar with the transmission line, simplifying the fabrication process. The incident energy excites a collective resonant mode of the entire sphere (an electric dipole resonance), thereby inducing currents in each of the rings of the structure. The presence of the conductor elements outside of the feed plane is critical towards achieving the excellent bandwidth behavior observed here. The fabricated antennas have a normalized size $ka=0.54$ (where $k$ is the wavenumber and $a$ is the radius of the sphere) and exhibit high radiative efficiencies ($>$ 90%) and bandwidth performance near the fundamental limit for their size.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:6 )