By Topic

Initial Results of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) Demonstrator Instrument

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Tanner, A.B. ; California Inst. of Technol., Pasadena ; Wilson, W.J. ; Lambrigsten, B.H. ; Dinardo, S.J.
more authors

The design, error budget, and preliminary test results of a 50-56-GHz synthetic aperture radiometer demonstration system are presented. The instrument consists of a fixed 24-element array of correlation interferometers and is capable of producing calibrated images with 1deg spatial resolution within a 17deg wide field of view. This system has been built to demonstrate a performance and a design which can be scaled to a much larger geostationary Earth imager. As a baseline, such a system would consist of about 300 elements and would be capable of providing contiguous full hemispheric images of the Earth with 1 K of radiometric precision and 50-km spatial resolution. An error budget is developed around this goal and then tested with the demonstrator system. Errors are categorized as either scaling (i.e., complex gain) or additive (noise and bias) errors. Sensitivity to gain and/or phase error is generally proportional to the magnitude of the expected visibility, which is high only in the shortest baselines of the array, based on model simulations of the Earth as viewed from geostationary Earth orbit. Requirements range from approximately 0.5% and 0.3deg of amplitude and phase uncertainty, respectively, for the closest spacings at the center of the array, to about 4% and 2.5deg for the majority of the array. The latter requirements are demonstrated with our instrument using relatively simple references and antenna models, and by relying on the intrinsic stability and efficiency of the system. The 0.5% requirement (for the short baselines) is met by measuring the detailed spatial response (e.g., on the antenna range) and by using an internal noise diode reference to stabilize the response. This result suggests a hybrid image synthesis algorithm in which long baselines are processed by a fast Fourier transform and the short baselines are processed by a more precise (G-matrix) algorithm which can handle small anomalies among antenna and receiver responses. Visibility bias- es and other additive errors must be below about 1.5 mK on average, regardless of baseline. The bias requirement is largely met with a phase-shifting scheme applied to the local oscillator distribution of our demonstration system. Low mutual coupling among the horn antennas of our design is also critical to minimize the biases caused by crosstalk of receiver noise. Performance is validated by a three-way comparison between interference fringes measured on the antenna range, solar transit observations, and the system model.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 7 )