By Topic

Multifrequency Microwave Emission Fromthe Dome-C Area on the East Antarctic Plateau: Temporal and Spatial Variability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Macelloni, G. ; Ist. di Fisica Applicata Nello Carrara, Sesto Fiorentino ; Brogioni, M. ; Pampaloni, P. ; Cagnati, A.

The Antarctic plateau that extends for several hundred kilometers with an average altitude of close to 3000 m a.s.l. is the highest part of the east Antarctic ice cap. This area provides unique opportunities for various scientific disciplines, including glaciology and atmospheric and earth sciences. In addition, there is growing interest in using the Antarctic plateau, for calibrating and validating data of satellite-borne microwave radiometers, thanks to the size, structure, and spatial homogeneity of this area, and the thermal stability of deeper snow layers. In this paper, we analyze the temporal and spatial variabilities of multifrequency microwave emission from the area surrounding the Dome-C scientific station using Advanced Microwave Scanning Radiometer data collected throughout 2005. Moreover, a multilayer coherent electromagnetic model is used for estimating the contribution of snow layers to emission at various frequencies. The results are consistent with the physical structure of the ice sheet and with its seasonal and spatial variations.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 7 )