By Topic

High-Temperature Stability of 650-nm Resonant-Cavity Light-Emitting Diodes Fabricated Using Wafer-Bonding Technique on Silicon Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Y. C. Lee ; Nat. Chiao Tung Univ., Hsinchu ; H. C. Kuo ; C. E. Lee ; T. C. Lu
more authors

AlGalnP-based visible 650-nm GalnP-AlGalnP resonant-cavity light-emitting diodes (RCLEDs) with high-temperature stability were fabricated by wafer-bonding techniques on Si substrates. In this study, the metal-bonding RCLEDs (MBRCLEDs) devices were designed with 84-mum apertures for light output. The MBRCLEDs with a maximum wall-plug efficiency of 13.7% were demonstrated at an injection current of 2.5 mA. In addition, the improved heat sinking of MBRCLEDs led to lower junction temperature, and resulted in a very low power decay of 0.31 dB from room temperature to 100degC at an injection current of 20 mA.

Published in:

IEEE Photonics Technology Letters  (Volume:19 ,  Issue: 14 )