By Topic

A Self-Mixing Laser Sensor Design With an Extended Kalman Filter for Optimal Online Structural Analysis and Damping Evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We have developed a new algorithm based on the extended Kalman filter in order to improve the resolution of a self-mixing (SM) optical displacement sensor. This noncontact sensor, which provides vibration measurement with a very high accuracy, can be used for online quality control, for example, measuring the damping of excited mechanical structures. This SM sensor subject to weak feedback has been tested in comparison with a commercial vibrometer in order to measure the frequency response function (FRF) of a plate with a passive damping to be characterized, and to show the efficiency of a damping treatment.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:12 ,  Issue: 3 )