By Topic

T–S Fuzzy Bilinear Model and Fuzzy Controller Design for a Class of Nonlinear Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li, T.S. ; Nat. Cheng Kung Univ., Tainan ; Shun-Hung Tsai

This paper proposes a fuzzy bilinear model for a class of nonlinear systems and a fuzzy controller to stabilize such systems. By examination of a modeling problem, we describe how to transform a nonlinear system into a bilinear one via Taylor's series expansion and then we adopt the Takagi-Sugeno (T-S) fuzzy modeling technique to construct a fuzzy bilinear model. For controller design, the parallel distributed compensation (PDC) method is utilized to stabilize the fuzzy bilinear system (FBS), and some sufficient conditions are derived to guarantee the stability of the overall fuzzy control system via linear matrix inequalities (LMIs). Moreover, we propound some sufficient conditions for robust stabilization of the FBS with parametric uncertainties. Finally, a numerical example and the Van de Vusse model are utilized to demonstrate the validity and effectiveness of the proposed FBS.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:15 ,  Issue: 3 )