By Topic

Optimization for Cooperative Sensing in Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peh, E. ; Inst. for Infocomm Res. ; Ying-Chang Liang

In cognitive radio networks, the secondary users can use the frequency bands when the primary users are not present. Hence secondary users need to constantly sense the presence of the primary users. When the primary users are detected, the secondary users have to vacate that channel. This makes the probability of detection important to the primary users as it indicates their protection level from secondary users. When the secondary users detect the presence of a primary user which is in fact not there, it is referred to as false alarm. The probability of false alarm is important to the secondary users as it determines their usage of an unoccupied channel. Depending on whose interest is of priority, either a targeted probability of detection or false alarm shall be set. After setting one of the probabilities, the other can be optimized through cooperative sensing. In this paper, we show that cooperating all secondary users in the network does not necessary achieve the optimum performance, but instead, it is achieved by cooperating a certain number of users with the highest primary user's signal to noise ratio. Computer simulations have shown that the Pd can increase from 92.03% to 99.88% and Pf can decrease from 6.02% to 0.06% in a network with 200 users.

Published in:

Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE

Date of Conference:

11-15 March 2007