By Topic

Path Selection and Multipath Congestion Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Key, P. ; Microsoft Res., Cambridge ; Massoulie, L. ; Towsley, D.

In this paper we investigate the potential benefits of coordinated congestion control for multipath data transfers, and contrast with uncoordinated control. For static random path selections, we show the worst-case throughput performance of uncoordinated control behaves as if each user had but a single path (scaling like log(log(N))/log(N) where N is the system size, measured in number of resources). Whereas coordinated control gives a throughput allocation bounded away from zero, improving on both uncoordinated control and on the greedy-least loaded path selection of e.g. Mitzenmacher. We then allow users to change their set of routes and introduce the notion of a Nash equilibrium. We show that with RTT bias (as in TCP Reno), uncoordinated control can lead to inefficient equilibria. With no RTT bias, both uncoordinated or coordinated Nash equilibria correspond to desirable welfare maximising states. Moreover, simple path reselection polices that shift to paths with higher net benefit can find these states.

Published in:

INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE

Date of Conference:

6-12 May 2007