Cart (Loading....) | Create Account
Close category search window

Near-Field and Far-Field Analyses of Alternating Impedance Electromagnetic Bandgap (AI-EBG) Structure for Mixed-Signal Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Jinwoo Choi ; IBM Syst. & Technol. Group, IBM Corp., Austin, TX ; Dong Gun Kam ; Daehyun Chung ; Srinivasan, K.
more authors

This paper presents near-field (NF) and far-field (FF) analysis of alternating impedance electromagnetic bandgap (AI-EBG) structure in packages and boards. Three test vehicles have been designed and fabricated for NF and FF measurements. Simulation results using a full-wave solver (SONNET) have been compared with measurement results. This paper investigates the radiation due to return current on different reference planes. The analysis results from simulations and measurements provide important guidelines for design of the AI-EBG structure based power distribution network for noise isolation and suppression in mixed-signal systems

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:30 ,  Issue: 2 )

Date of Publication:

May 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.