By Topic

Power Management of an Ultracapacitor/Battery Hybrid Energy Storage System in an HEV

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Srdjan M. Lukic ; Grainger Power Electronics and Motor Drives Laboratory, Illinois Institute of Technology, 3301 South Dearborn Street, Chicago, IL 60616, USA ; Sanjaka G. Wirasingha ; Fernando Rodriguez ; Jian Cao
more authors

To overcome the power delivery limitations of batteries and energy storage limitations of ultracapacitors, hybrid energy storage systems, which combine the two energy sources, have been proposed. A comprehensive review of the state of the art is presented. In addition, a method of optimizing the operation of a battery/ultracapacitor hybrid energy storage system (HESS) is presented. The goal is to set the state of charge of the ultracapacitor and the battery in a way which ensures that the available power and energy is sufficient to supply the drivetrain. By utilizing an algorithm where the states of charge of both systems are tightly controlled, we allow for the overall system size to reduce since more power is available from a smaller energy storage system

Published in:

2006 IEEE Vehicle Power and Propulsion Conference

Date of Conference:

6-8 Sept. 2006