By Topic

Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Classification and extraction of spatial features are investigated in urban areas from high spatial resolution multispectral imagery. The proposed approach consists of three steps. First, as an extension of our previous work [pixel shape index (PSI)], a structural feature set (SFS) is proposed to extract the statistical features of the direction-lines histogram. Second, some methods of dimension reduction, including independent component analysis, decision boundary feature extraction, and the similarity-index feature selection, are implemented for the proposed SFS to reduce information redundancy. Third, four classifiers, the maximum-likelihood classifier, backpropagation neural network, probability neural network based on expectation-maximization training, and support vector machine, are compared to assess SFS and other spatial feature sets. We evaluate the proposed approach on two QuickBird datasets, and the results show that the new set of reduced spatial features has better performance than the existing length-width extraction algorithm and PSI

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 2 )