By Topic

A Robust Hybrid Intelligent Position/Force Control Scheme for Cooperative Manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gueaieb, W. ; Sch. of Inf. Technol. & Eng., Ottawa Univ., Ont. ; Karray, F. ; Al-Sharhan, S.

We examine in this paper the complex problem of simultaneous position and internal force control in multiple cooperative manipulator systems. This is done in the presence of unwanted parametric and modeling uncertainties as well as external disturbances. A decentralized adaptive hybrid intelligent control scheme is proposed here. The controller makes use of a multi-input multi-output fuzzy logic engine and a systematic online adaptation mechanism. Unlike conventional adaptive controllers, the proposed controller does not require a precise dynamical model of the system's dynamics. As a matter of fact, the controller can achieve its control objectives starting from partial or no a priori knowledge of the system's dynamics. The ability to incorporate the already acquired knowledge about the system's dynamics is among what distinguishes the proposed controller from its predecessor adaptive fuzzy controllers. Using a Lyapunov stability approach, the controller is proven to be robust in the face of varying intensity levels of the aforementioned uncertainties. The position and the internal force errors are also shown to asymptotically converge to zero under such conditions

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:12 ,  Issue: 2 )