By Topic

Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Tech Ang ; Sch. of Mech. & Aerosp. Eng, Nanyang Technol. Univ., Singapore ; Pradeep K. Khosla ; Cameron N. Riviere

Effective employment of piezoelectric actuators in microscale dynamic trajectory-tracking applications is limited by two factors: 1) the intrinsic hysteretic behavior of piezoelectric ceramic and 2) structural vibration as a result of the actuator's own mass, stiffness, and damping properties. While hysteresis is rate-independent, structural vibration increases as the piezoelectric actuator is driven closer to its resonant frequency. Instead of separately modeling the two interacting dynamic effects, this work treats their combined effect phenomenologically and proposes a rate-dependent modified Prandtl-Ishlinskii operator to account for the hysteretic nonlinearity of a piezoelectric actuator at varying actuation frequency. It is shown experimentally that the relationship between the slope of the hysteretic loading curve and the rate of control input can be modeled by a linear function up to a driving frequency of 40 Hz

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:12 ,  Issue: 2 )