By Topic

Single-Chip Multiple-Frequency ALN MEMS Filters Based on Contour-Mode Piezoelectric Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gianluca Piazza ; Dept. of Electr. & Syst. Eng., Pennsylvania Univ., Philadelphia, PA ; Philip J. Stephanou ; Albert P. Pisano

This paper reports experimental results on a new class of single-chip multiple-frequency (up to 236 MHz) filters that are based on low motional resistance contour-mode aluminum nitride piezoelectric micromechanical resonators. Rectangular plates and rings are made out of an aluminum nitride layer sandwiched between a bottom platinum electrode and a top aluminum electrode. For the first time, these devices have been electrically cascaded to yield high performance, low insertion loss (as low as 4 dB at 93MHz), and large rejection (27 dB at 236 MHz) micromechanical bandpass filters. This novel technology could revolutionize wireless communication systems by allowing cofabrication of multiple frequency filters on the same chip, potentially reducing form factors and manufacturing costs. In addition, these filters require terminations (1 kOmega termination is used at 236 MHz) that can be realized with on-chip inductors and capacitors, enabling their direct interface with standard 50-Omega systems

Published in:

Journal of Microelectromechanical Systems  (Volume:16 ,  Issue: 2 )