By Topic

A New Power System Digital Harmonic Analyzer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, new digital instruments measuring power-quality indicators and harmonic analyzers are developed. A new technique for simultaneous local system frequency and amplitudes of the fundamental and higher harmonics estimation from either a voltage or current signal is presented. The structure consists of three decoupled modules: the first one for an adaptive filter of input signal, the second one for frequency estimation, and the third one for harmonic amplitude estimation. A very suitable algorithm for frequency and harmonic amplitude estimation is obtained. This technique provides accurate frequency estimates with error in the range of 0.002 Hz and amplitude estimates with error in the range of 0.03% for SNR = 60 dB in about 25 ms. The theoretical basis and practical implementation of the technique are described. To demonstrate the performance of the developed algorithm, computer simulated data records are processed. Data of the distribution power system voltage signals are also collected in the laboratory environment and are processed in a newly developed digital PC-based harmonic analyzer. It has been found that the proposed method really meets the need of offline applications. Even more, by using the parallel computation algorithms, this method should meet the need of online applications and should be more practical

Published in:

IEEE Transactions on Power Delivery  (Volume:22 ,  Issue: 2 )